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Abstract

In this paper we present the research results in the
�eld of perception for real microrobotic swarm.
The proposed hardware and software solution uses
IR-based re�ective measurement for individual per-
ception and the Dampster-Shafer evidential reason-
ing for hypothesis re�nement in collective percep-
tion. Especial attention is paid to a reliable identi-
�cation of encountered geometries and a reduction
of local communication. Based on the experimental
results we make a conclusion about cognitive ca-
pabilities of individual microrobots and the whole
swarm.

1 Introduction
Miniaturization represents now a very important trend in
many areas of research. Molecular-scale or nanotechnolog-
ical devices jumped from science-�ction novels to research
papers. Even the today’s technology allows creating complete
autonomous systems, such as robots, in the size of 1 mm3. As
demonstrated by a progress in the I-Swarm project [I-Swarm,
2003 2007], the swarm of thousand such microrobots gets re-
ality as well as come into the reality impressive applications
of this technology.

The scaling down of the hardware in�uences almost all
important parameters of microrobots, as e.g. running time,
communication distance and channel capacity, computational
power, movement and so on. However we ask ourselves about
�intelligence� of such a microrobot; is it also scaled down s o
that we get �nally some �stupid moving thing� [Kornienko
et al., 2004] ? Since many years there exists in the sci-
enti�c literature the opinion that �arti�cial intelligenc e� for
very small systems drifts towards �collective arti�cial in tel-
ligence�, like those in social insects [Bonabeau et al., 1999].
For collective systems the �individual intelligence� gets some
pre-intelligence form. The question is which minimal degree
of individual intelligence does allow growing �collective in-
telligence� ?

In this paper we consider such an aspect of cognitive in-
telligence as perception. In a microrobotic swarm the size of
a robot is essentially smaller than the size of most environ-
mental objects. The recognition of these objects is primarily
done in collective way. However here we encounter the same

question about �individual aspects� of collective percept ion.
Is a microrobot able to provide enough sensory information
for the collective perception ? Which sensing and processing
steps should be done individually and which collectively ?

For answering these questions we designed and proto-
typed a sensor system for our own test microrobot. This
is is actually larger as envisioned in I-Swarm project how-
ever is very cheap and easy to reproduce without speci�c
equipment. Based on this prototype we can investigate ques-
tions about �individual/collective intelligence� so that the re-
sults, e.g. principles, methods, algorithms can be later imple-
mented in the 1mm3 robot. The size of the sensor system is
23�23�5mm. It uses the Megabitty board (23�23�2mm)
with Atmel AVR Mega 8 microcontroller, having 8 kB ROM
and 1 kB RAM [Megabitty, 2005]. Besides perception,
the board supports 6-directional robot-robot and host-robot
communication, with the average communication radius 0-
140mm (with special solution for deadlock reduction) and a
maximum of 300mm. The sensors are also used for prox-
imity sensing in navigation. The communication subsystem
for a large microrobotic swarm is described in [Kornienko et
al., 2005]. In this paper we present the development of the
perception system for the sensor board and the problems of
individual and collective perception in microrobotics.

The rest of paper is organized as follows. In the next two
sections the problem of individual perception and the devel-
opment of IR-perception system are described. Then, we dis-
cuss the nonlinearities of this perception and the algorithms
of feature extraction and surfaces classi�cation. The last two
sections are devoted to the problem of collective classi�ca tion
and preliminary experiments.

2 Problems of individual perception in
microrobotic swarms

As mentioned before, the recognition of large objects by
small microrobots is primarily performed in a collective way.
However the prerequisite for collective perception is the sur-
face identi�cation and classi�cation that is performed by e ach
microrobot. We name further this process as individual per-
ception. From the collective perception point of view the fol-
lowing types of surfaces are required to be identi�ed:
1) in�nite-size surfaces (from a robot’s viewpoint), as huge
objects or borders;



2) �nite-size surfaces (a microrobot has to calculate the visi-
ble size of a surface) which are classi�ed, at least, into sma ll,
medium and large;
3) convex and concave corners;
4) 2-side and 3-side concave surfaces;
5) one-surface/many-surfaces geometry.
Additionally, the microrobots have to be able to perform the
following activities:
1) detection of holes (gangways) in surfaces;
2) classi�cation of the perceived surfaces into de�ned classe s
and providing a probability of correct classi�cation ;
3) recognition of robot’s own position in relation to a corner
(left/right from a corner) or even its own slope to a surface.
When each robot identi�es the surface in its own sensing
areal, further collective processing consists in fusing individ-
ual observations into many hypotheses and collective identi�-
cation of most probable hypothesis about the observed object
(see also [Ye et al., 2002]).

Returning to the issue of individual perception, we identi-
�ed the following implementation possibilities:
1) vision-based way by e.g. using some small micro(faced)-
cameras;
2) re�ection-based way by using laser or infra-red light,
ultra-sound etc.;
3) wavelength-based way such as color sensing;
4) by using speci�c chemical, temperature, vibration, mag-
netic and so on sensors (we do not consider them here).

The vision-based way represents the most information in-
tensive mode. However its application in microrobotics has
several dif�culties caused by very limited computational c a-
pabilities and small memory. Algorithms of image process-
ing are dif�cult to be implemented in this hardware. More-
over due to very small size we prefer to use the same sen-
sors for navigation (proximity sensing and obstacle detec-
tion) and communication (robot-robot and host-robot) pur-
poses as well. Finally, the geometrical features from deep im-
ages are essentially more useful for collective perception than
edges and regions from camera’s grey-value images. Thus,
the vision-based as well as wavelength-based ways, although
they have found a large application in mini- and usual robot-
ics, unfortunately are less useful here. The re�ection-bas ed
perception uses the principle of sending and receiving a sig-
nal, that can be also used for navigation and communication.

Considering different alternatives for re�ection-
based perception we focus primarily on laser, electro-
magnetic/inductive and infra-red systems. Ultra-sound
systems do not satisfy the size limitation. Though the laser
provides the most exact measurement and long range, there
are several technical dif�culties to use it with the microro bot.
So, choosing between electro-magnetic/inductive and infra-
red systems, we prefer the last ones due to their simplicity,
relative long working range and small energy consumption.

Generally, the IR-systems are recently dominant in so-
called small-distance-domain, as e.g. for communication be-
tween laptops, hand-held devices, remote control and others.
The IR-solution is not new in robotic domain, see e.g. [Kube,
1996], [Suzuki et al., 1995]. There are many approved
schemes or even industrial sensors for IR-communication.

However the fusion of perception and communication using
IR-devices does not �nd too many applications, perhaps be-
cause of a high nonlinearity of IR-based perception and avail-
ability of more appropriate solutions in the domain of usual
robotics. Therefore the microrobotic domain of integrated IR-
solution (perception, communication, navigation) is more or
less unexploited.

The IR-based perception consists on sending an IR radia-
tion beam and receiving the re�ected light. The intensity of
this light contains information about the geometry of re�ec t-
ing surface (primarily a distance between IR-recever/emitter
and surface). As mentioned, the IR-based perception is
highly nonlinear. The most large in�uence on accuracy of
perception exerts the resolution of the distance sensor. In the
center of radiation ray, the intensity of IR radiation is high-
est. Closely to the bounds of this ray, this intensity becomes
gradually degraded (Figure 1). The main component of a re-
�ecting light consists of the energy of the central radiatio n
stream. However low-intensity �secondary streams� spread
the re�ecting light so that object’s edges and gaps between
objects get non-recognizable. With a poor resolution of dis-
tance sensor, small geometrical elements cannot be perceived
and so cannot be used as features for recognition. Therefore
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Figure 1: Perception by using the IR beam, Rmax recognition dis-
tance, Dres; Ores distance/object resolution. (a) Thickness of radi-
ation beam and in�uence on the size measurement; (b) Nonlinearity
in the identi�cation of many-surfaces geometry.

for perception are suitable only such IR-emitters that have an
as small as possible opening angle of the beam.

Secondly, the accuracy of measurement depends on the dis-
tance to a re�ecting surface 1. In Figure 2(a) we demonstrate
this effect for the developed sensor system. Nonlinear accu-
racy essentially in�uences the further recognition of feat ures.

The re�ecting light is also very sensitive to the color of re-
�ection object. In Figure 2(a) we show the distance measur-
ing values for white and gray objects. Further in experiments
we use only white color objects. The distance measuring also
depends on the object’s slope to a radiation ray. In Section 4
we discuss in detail these nonlinearities and suggest some ap-
proaches to absorb them.

Since we did not found a suitable integrated IR-solution
for the microrobot, we decided to develop our own required
hardware and the corresponding processing algorithms. In
the next sections we describe them.

1The dependence between re�ecting light and distance is also
nonlinear however this problem can be easily solved by a look-up
table or some approximation functions.
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Figure 2: (a) Dependency between ADC values of emitter voltage on phototransistor and the distance to re�ecting object. Shown are values
for the white re�ecting object (white paper) and the grey re�ecting object ( grey cardboard); (b) The used features of IR-diagrams relevant
for identifying the surfaces; (c) The �thickness effect� of radiation beam by scanning a gap with different s ize r. The distance between a
microrobot and the gap is 70 mm.

3 Development of the IR-based perception
system

The main requirement on the IR-perception is given by as
small as possible opening angle of the radiation ray. Addi-
tionally, IR-emitter has to provide a high energy beam, being
able to get good deep images. Finally, IR-emitter and receiver
should be able to work in a communication mode.

The perception system of the microrobot is a part of IR-
system used for proximity sensing, obstacle detection, dis-
tance measurement and communication, as well (Figure 3).
For the perception and objects recognition we use only the

(a) (b)

Figure 3: (a) The megabitty board and the sensors board used in
the prototype of a microrobot; (b) The 6-directional sensor system
for directional communication and proximity sensing.

distance measuring sensor, so that only this sensor is fur-
ther considered. This sensor consists of a receiver with a
wide opening angle (used also for communication and prox-
imity sensing) and an emitter with as small as possible beam
angle (used for perception and long-range communication).
We utilize the Si phototransistor TEFT4300 (60o, peak sen-
sitivity 950 nm) and the high power GaAs/GaAlAs emitter
TSAL6100 (radiant intensity >80 mW/sr, 20o, the real open-
ing angle is of 18-22o, 950 nm). This combination is a result
of many experiments with different sensors (over 30 pairs),
with integrated receiver/emitter like SFH9201, as well as
non-integrated ones. The TEFT4300-TSAL6100 pair demon-
strated the best spectral coupling, the longest sensing distance

and the acceptable nonlinearity of sensing. Although the IR-
emitter is relatively large for the microrobot (8x�5 mm), the
speci�c construction of the chassis allows to hide it inside the
robot.

Since IR-emitter and receiver are non-integrated and are
placed side by side in the chassis, they have to be optically
isolated. The optical isolation of the emitter allows also re-
ducing the opening angle of the beam up to 10-15o (it reduces
also a perception distance). However the main problem here
is to provide similar optical characteristics of isolation for a
large number of different microrobots in a swarm (to avoid
later the problem of individual calibration of each microro-
bot).

The principle of object recognition is the following. As
soon as a robot detects (by means of proximity sensors) an
obstacle in front of itself, it switches on the high power IR-
emitter and after 1ms delay (needed to get reliable re�ectin g
light) measures voltage on the emitter of phototransistor. The
dependence between emitter voltage (after ADC) and the dis-
tance to an object is shown in Figure 2(a). Generally, this
sensor perceives distances up to 300 mm. However accuracy
of measurement is different. For the pair distance-accuracy
where � is the accuracy, we obtained the following values:
30-100 mm ! �=1 mm, 100-150 mm ! �=3-5 mm, 150-
200 mm ! �=10-15 mm and after 200 mm ! �=30-50
mm. Therefore, the reasonable measuring distance for object
recognition lies within 30 mm-100 mm (with the accuracy of
1-2 mm).

Not only the resolution of the IR-sensor is important for
scanning the objects. During scanning, a microrobot turns
on some degrees. The more exact is this turning, the more
precise is the spatial resolution of sensor data. Microrobot
does not possess any devices allowing to measure positions
and orientation of chassis or wheels. Therefore there is only
one way to rotate a robot, namely to turn the motors on and
after some delay turn them off. This delay has to be so cho-
sen, that a robot rotates on some �xed degree. The motors
are controlled through the H-bridge SI9988, that can change
a polarity of supplying current. Choosing normal polarity for
one motor and inverse polarity for the second motor, the ro-
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Figure 4: �Jasmine�, the prototype of the microrobot, scans different surfaces, where d is the distance to surfaces. (a) Scanning of the �nite-
size surface, object 48 mm; (b) Scanning of the convex surface; (c) Scanning of the 3-concave surface; (d) The IR-diagram for �nite-size
surface; (e) The IR-diagram for convex surface; (f) The IR-diagram for 3-concave sides surface of 95�95�95 mm;

bot can rotate without changing its own position. In this way
we get relatively shift-errorless deep images. After some tests
we achieved the resolution and accuracy of rotation 1o (tak-
ing into account different friction between weels/chassis and
�oor surface).

In our experiments, when a robot detects an obstacle on
the distance of 70 mm � 10 mm, it stops and then rotates
60o left. After that it scans the obstacle with the distance
sensor by rotating 120 o right. During this scanning it writes
the obtained values of distances each 1 degree into an integer
array. In this way we have 120 values describing a visible
geometry of the encountered obstacle. In Figure 4 and 5 we
demonstrate some geometries of encountered obstacles and
the scanned surfaces.

4 Features extraction from IR-deep images
After performing the �rst experiments, we faced the follow-
ing challenge: which features of the obtained IR-diagrams
are relevant for identifying the geometry of the surfaces ? By
analyzing the IR-diagrams in Figure 4 and 5, we �nd the fol-
lowing features as representative and useful in the IR-based
individual perception (Figure 2(b)):
1. The angle �, which represents the scanning angle between
the �rst visible edge and the last visible edge of the surface ;
2. The peak intensity of the diagram, Imax. This corresponds
to the maximal intensity of re�ecting light and, in turn, to t he
minimal distance d between the surface and the microrobot.
For the most types of surfaces (beside convex corners) this

minimal distance is measured as a perpendicular to a surface.
This feature allows calculating the visible size of a surface by
using trigonometric relations;
3. The left and right slopes, denoted as 
l and 
r are use-
ful for identifying the size-type of the surface (unlimited, big,
medium, small). They are calculated as slopes of the approx-
imation lines Sl, Sr. The slope denotes also the �degree of
a distance decreasing� and enable us to identify the so-call ed
�convex surfaces� that cannot be recognized in the trigono-
metrical way;
4. The position of the �center� of the IR-diagram , Pimax

in relation to the scanning angle (�0�, origin point on the X
axis). Displacement of the center points to a slope between
the front of robot and surface. In this way we can identify a
directional orientation of the microrobot.

Now we formalize the nonlinearities mentioned in Sec-
tion 2 and present their impact on the corresponding features:
1. Nonlinear thickness of the IR radiation ray and so differ-
ent distribution between high-energy beam and low-energy
beam. The �rst effect of this nonlinearity consists in sprea d
edges (Figure 2(b)). This nonlinear effect can be absorbed
by calibration. The second effect is shown in Figure 2(c).
At scanning many-surfaces geometry (a gap between objects)
a robot cannot reliable differentiate between 2-concave sur-
faces and surfaces that belong to different objects;
2. Nonlinear measurement for small distances. As known
from other IR-distance measurement systems (e.g. [Caprari
and Siegwart, 2003]), the maximal intensity of measurement



d=50 mm

d=30 mm

d=70 mm

d=100 mm

d=150 mm

Rotation angle

V
al

u
es

 a
ft

er
A

D
C

0

50

100

150

200

250

-60 -40 -20 0 20 40 60

(a)

d=60 mm

d=30 mm

d=70 mm

Rotation angle

V
al

u
es

 a
ft

er
A

D
C

0

50

100

150

200

250

-60 -40 -20 0 20 40 60

(b)

d=70 mm left to
1 corner

st

right to
1 corner

st

very
right to
1 corner

st

Rotation angle

V
al

u
es

 a
ft

er
A

D
C

0

10

20

30

40

50

60

70

80

90

100

-60 -40 -20 0 20 40 60

(c)

Figure 5: IR-diagrams for different types of surfaces, d is a distance to surfaces. (a) �In�nite-size� surfaces with �at geometry; (b) Convex
round (external diameter 125 mm) surface; (c) Many-surfaces geometry (1st convex corner 122�60 mm and 2nd concave corner 60�95
mm), robot positioned 70 mm before the middle part.

lies in 10-25% before the front of IR-receiver, after that the
intensity goes down (therefore small distances cannot be mea-
sured by these systems at all). Due to the speci�c restric-
tion and the application of high-power GaAs/GaAlAs emit-
ter, we removed this effect. However the surfaces that lie less
then 40 mm away from a robot are represented only by val-
ues 245-250. In this way, for close measurement ( 30 mm)
we get a �at horizontal diagram. Another undesired effect
in small-average distances (40-70 mm) consists in a sponta-
neous decreasing of peak intensity (this is observable in all
IR-diagrams in Figures 4 and 5). We cannot identify the na-
ture of this nonlinearity and assume multiple IR-re�ection s as
a reason for them;
3. Nonlinear accuracy of distance measurement. This re-
quires nonlinear correction (it is done as a look-up table) of
trigonometric relation in dependence of distance. However
this nonlinearity is very �tricky�. Even when a robot starts
a measurement in the �good� area of 40-120 mm, a part of
geometry can lie over 150 or 200 mm away. The effect of
this nonlinearity appears in unreliable identi�cation of m any-
surfaces geometry (Figure 5(c) �left to 1st. corner�);
4. Nonlinear rotation of the robot. This can lead to different
left 
l and right 
r slopes even for symmetric surfaces. The
most easiest solution here is to calibrate 
l and 
r;
5. Nonlinearity in measuring convex surfaces. The identi�-
cation of all types of convex geometries is performed by 
l

and 
r. The difference between slopes for e.g. round objects
(Figure 5(b)), convex corners (Figure 4(b)) and �nite-size �at
objects (Figure 4(a)) is small, moreover due to a nonlinear
intensity diagram, these slopes change with distances. This
problem has some basic character and we hardly belief that
with all nonlinearities of IR-perception we are able to reli-
able identify the type of convex surfaces.
The main problem of these nonlinearities represents the ne-
cessity to maintain many look-up tables for corrections. This,
in turn, is limited by a small memory of Atmel microcon-
troller. The assumption is that this problem can be solved
in collective way. We can reduce the accuracy of individ-
ual recognition (so that to satisfy all hardware constraints) till
such a degree which still allows a reliable collective recogni-

tion. Now, based on the discussed features and nonlinearities,
we can brie�y analyze the types of surfaces.

1. Surfaces with �at geometry. The �at type of geometry
is primarily characterized by only one peak value on the IR-
diagram. Finite-size surfaces are also characterized by large
left and right slopes and scanning angle � � 120�, Fig-
ure 4(a). The size Lvis can be calculated as 2d tan (�=2),
taking into account the �fuzzi edge� nonlinearity.

�In�nite-size� surfaces (Figure 5(a)) have small slopes of
IR-diagrams and � � 120�. To absorb the nonlinearity of
slopes for small and large distance, we apply the polygonal
approximation [Pitas, 1993] and use in calculation the rela-
tion 
fr;lg=Sfr;lg instead of simple 
fr;lg, where Sfr;lg is the
length of approximating line. In the performed experiments
the probability of correct identi�cation is very high and th e
accuracy of size calculation is of 5 mm (15 mm in the worst
case).

2. Surfaces with convex geometry. Surfaces with con-
vex geometry possess also only one peak value, however
larger slopes then �at geometries. This type of geometry
has to be identi�ed before the calculation of size, which has
no sense in this case. There are several types of convex
geometry: convex corners and convex round surfaces (Fig-
ure 4(b)), convex many-surface geometry (can be recognized
only collectively)(Figure 4(f)). We identify this geometry
by 
fr;lg=Sfr;lg in the IR-diagrams. The difference between
them points to a position in relation to a corner (left to a cor-
ner, right to a corner). The probability of correct identi�c a-
tion of convex round geometry is very high, however convex
corners are often classi�ed as �at geometry. One approach to
avoid this problem is the so-called �active exploration� (s im-
ple move towards the surface and scan again induces the ap-
pearance of a large ��at region� in the peak intensity which
points to the �at type of geometry).

3. Many-surfaces and concave geometries. Concave
geometries manifest primarily as multiple peaks in IR-
diagrams. Based on the number of peaks we can differenti-
ate between 2-concave (concave corners) and 3-concave sides
geometry (Figure 4(c)). Concave many-surfaces geometries
(Figure 4(b)) can be also classi�ed by one robot. They have
one peak value, however multiple left or right slopes. Many-
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Figure 6: (a) Distributed architecture for collective observation; (b) Spatial distribution of the robots around the observed object; (c)
Geometries for matching and objects classes.

surfaces geometry can also be composed from surfaces that
belong to different objects. Generally, concave geometries
can be identi�ed with high reliability, however some �ne dif -
ferentiation between them is not always possible.

4. Estimation of probability. Since the robot cannot reli-
able classify the type of surfaces, it calculates a probability of
correct classi�cation. The calculation is done in the follo wing
way. We measure the possible values of �, d, 
fr;lg=Sfr;lg,
Pimax and estimate Lvis for all types of surfaces. The robot
uses last square metrics to calculate the relation between the
measured values and these presaved types. For collective per-
ception a robot sends all possible classi�cations that have the
probability over 30%.

Through the presented features of the IR-deep image we
tried to classify several surfaces and to identify the classi�ca-
tion probability as well, as base steps or components required
for the individual perception.

5 Collective Perception
The described in the previous sections individual percep-
tion provides the sensor input for the collective perception.
The approach for collective perception presented here pro-
poses that each robot talks to its neighbors to exchange
information about the surrounded object. In this task we
limit ourselves only to the problem of collective classi�ca-
tion [Pradier, 2005]. The robot possesses the objects models
and have only to order the collective sensor input to one of
the presaved model.

The distributed architecture for collective perception is
shown in Figure 6(a). There is no privileged agent with a
special role: all robots perform the same operations. The sug-
gested method is homogeneous, i.e. all robots act the same
and there is no need for a leader. Due to the homogeneous
architecture the approach is robust, scalable, moreover new
robots can join the team dynamically without any need to
readjust any task assignment. Figure 6(b) shows how robots
are deployed during collective observation. There are two
possible implementations for the propagation of hypotheses:
a single agent collects the information needed to identify an
object by moving around it and performing the sensing oper-
ations; a single agent acquires local evidences and propagates

hypotheses for the further fusion.

5.1 Object model
Given the limitations on the sensing capabilities of the robots,
object classes can only be de�ned in terms of their geome-
tries, as mentioned in Section 4. Figure 6(c) shows the 2D
geometries of the four object classes which will be used sub-
sequently. Once robots are situated around the object, they
can estimate the local properties of the object as seen from
their current positions called viewpoints. The actual mea-
surement obtained from a viewpoint v can be noted as S(v);
S : V 7! feature vector and represents the output of the
distance sensors. Given an object class, it is possible to es-
tablish the expected sensor outputs for a number of views.
A number of viewpoints nKi

V for each object class Ki are
chosen, along a trajectory situated in the center of the mea-
surement domain, and noted as V

Ki =
�

vKi
n

�

. The corre-
sponding expected measurements for objects of class Ki are

S
�

V
Ki

�

=

�

S
�

vKi

1

�

; : : : ; S

�
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n
Ki
V

��

. Therefore, the ob-

ject model for a class Ki incorporates an ordered sequence of
views for different successive positions around objects of that
class. The starting position is arbitrary: only the ordering is
relevant. The direction � clockwise or counterclockwise �
can be chosen arbitrarily, but must be the same for all object
models.

Additionally, object models include information about the
reachability of different viewpoints, taking into account both
geometrical constraints and the limitations imposed by the
communication capabilities of the robots. It is noted as

W Ki =
n �

vKi

j ; vKi

k

�
�

�

�
vKi

k reachable from vKi

j

o

. Fi-

nally, the corresponding distances between viewpoints in
W Ki are added to the object model, as dV : V

Ki �V
Ki ! R.

The set of all canonical measurements � corresponding to
sets of observable features, called aspects � in the model

is noted A =
n

S
�

v
Kj

i

�o

and its cardinality can be re-

duced by clustering the expected measurements. In that
case, a sequence of canonical views could match several
(identity; position) pairs.

The goal of collective classi�cation in a swarm of robots is




