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Abstract

In this paper we present the research results in the
field of perception for real microrobotic swarm.
The proposed hardware and software solution uses
IR-based reflective measurement for individual per-
ception and the Dampster-Shafer evidential reason-
ing for hypothesis refinement in collective percep-
tion. Especial attention is paid to a reliable identi-
fication of encountered geometries and a reduction
of local communication. Based on the experimental
results we make a conclusion about cognitive ca-
pabilities of individual microrobots and the whole
swarm.

1 Introduction
Miniaturization represents now a very important trend in
many areas of research. Molecular-scale or nanotechnolog-
ical devices jumped from science-fiction novels to research
papers. Even the today’s technology allows creating complete
autonomous systems, such as robots, in the size of 1 mm3. As
demonstrated by a progress in the I-Swarm project[I-Swarm,
2003 2007], the swarm of thousand such microrobots gets re-
ality as well as come into the reality impressive applications
of this technology.

The scaling down of the hardware influences almost all
important parameters of microrobots, as e.g. running time,
communication distance and channel capacity, computational
power, movement and so on. However we ask ourselves about
”intelligence” of such a microrobot; is it also scaled down so
that we get finally some ”stupid moving thing”[Kornienko
et al., 2004] ? Since many years there exists in the sci-
entific literature the opinion that ”artificial intelligence” for
very small systems drifts towards ”collective artificial intel-
ligence”, like those in social insects[Bonabeauet al., 1999].
For collective systems the ”individual intelligence” getssome
pre-intelligence form. The question iswhich minimal degree
of individual intelligence does allow growing ”collectivein-
telligence”?

In this paper we consider such an aspect of cognitive in-
telligence as perception. In a microrobotic swarm the size of
a robot is essentially smaller than the size of most environ-
mental objects. The recognition of these objects is primarily
done in collective way. However here we encounter the same

question about ”individual aspects” of collective perception.
Is a microrobot able to provide enough sensory information
for the collective perception ? Which sensing and processing
steps should be done individually and which collectively ?

For answering these questions we designed and proto-
typed a sensor system for our own test microrobot. This
is is actually larger as envisioned in I-Swarm project how-
ever is very cheap and easy to reproduce without specific
equipment. Based on this prototype we can investigate ques-
tions about ”individual/collective intelligence” so thatthe re-
sults, e.g. principles, methods, algorithms can be later imple-
mented in the 1mm3 robot. The size of the sensor system is
23×23×5mm. It uses the Megabitty board (23×23×2mm)
with Atmel AVR Mega 8 microcontroller, having 8 kB ROM
and 1 kB RAM [Megabitty, 2005]. Besides perception,
the board supports 6-directional robot-robot and host-robot
communication, with the average communication radius 0-
140mm (with special solution for deadlock reduction) and a
maximum of 300mm. The sensors are also used for prox-
imity sensing in navigation. The communication subsystem
for a large microrobotic swarm is described in[Kornienkoet
al., 2005]. In this paper we present the development of the
perception system for the sensor board and the problems of
individual and collective perception in microrobotics.

The rest of paper is organized as follows. In the next two
sections the problem of individual perception and the devel-
opment of IR-perception system are described. Then, we dis-
cuss the nonlinearities of this perception and the algorithms
of feature extraction and surfaces classification. The lasttwo
sections are devoted to the problem of collective classification
and preliminary experiments.

2 Problems of individual perception in
microrobotic swarms

As mentioned before, the recognition of large objects by
small microrobots is primarily performed in a collective way.
However the prerequisite for collective perception is the sur-
face identification and classification that is performed by each
microrobot. We name further this process as individual per-
ception. From the collective perception point of view the fol-
lowing types of surfaces are required to be identified:
1) infinite-size surfaces(from a robot’s viewpoint), as huge
objects or borders;
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2) finite-size surfaces(a microrobot has to calculate the visi-
ble size of a surface) which are classified, at least, into small,
medium and large;
3) convex and concave corners;
4) 2-side and 3-side concave surfaces;
5) one-surface/many-surfaces geometry.
Additionally, the microrobots have to be able to perform the
following activities:
1) detection of holes (gangways) in surfaces;
2) classification of the perceived surfaces into defined classes
and providing a probability of correct classification;
3) recognition of robot’s own position in relation to a corner
(left/right from a corner) or even its own slope to a surface.
When each robot identifies the surface in its own sensing
areal, further collective processing consists in fusing individ-
ual observations into many hypotheses and collective identifi-
cation of most probable hypothesis about the observed object
(see also[Ye et al., 2002]).

Returning to the issue of individual perception, we identi-
fied the following implementation possibilities:
1) vision-basedway by e.g. using some small micro(faced)-
cameras;
2) reflection-basedway by using laser or infra-red light,
ultra-sound etc.;
3) wavelength-basedway such as color sensing;
4) by usingspecificchemical, temperature, vibration, mag-
netic and so on sensors (we do not consider them here).

The vision-based way represents the most information in-
tensive mode. However its application in microrobotics has
several difficulties caused by very limited computational ca-
pabilities and small memory. Algorithms of image process-
ing are difficult to be implemented in this hardware. More-
over due to very small size we prefer to use the same sen-
sors for navigation (proximity sensing and obstacle detec-
tion) and communication (robot-robot and host-robot) pur-
poses as well. Finally, the geometrical features from deep im-
ages are essentially more useful for collective perceptionthan
edges and regions from camera’s grey-value images. Thus,
the vision-based as well as wavelength-based ways, although
they have found a large application in mini- and usual robot-
ics, unfortunately are less useful here. The reflection-based
perception uses the principle of sending and receiving a sig-
nal, that can be also used for navigation and communication.

Considering different alternatives for reflection-
based perception we focus primarily on laser, electro-
magnetic/inductive and infra-red systems. Ultra-sound
systems do not satisfy the size limitation. Though the laser
provides the most exact measurement and long range, there
are several technical difficulties to use it with the microrobot.
So, choosing between electro-magnetic/inductive and infra-
red systems, we prefer the last ones due to their simplicity,
relative long working range and small energy consumption.

Generally, the IR-systems are recently dominant in so-
called small-distance-domain, as e.g. for communication be-
tween laptops, hand-held devices, remote control and others.
The IR-solution is not new in robotic domain, see e.g.[Kube,
1996], [Suzuki et al., 1995]. There are many approved
schemes or even industrial sensors for IR-communication.

However the fusion of perception and communication using
IR-devices does not find too many applications, perhaps be-
cause of a high nonlinearity of IR-based perception and avail-
ability of more appropriate solutions in the domain of usual
robotics. Therefore the microrobotic domain of integratedIR-
solution (perception, communication, navigation) is moreor
less unexploited.

The IR-based perception consists on sending an IR radia-
tion beam and receiving the reflected light. The intensity of
this light contains information about the geometry of reflect-
ing surface (primarily a distance between IR-recever/emitter
and surface). As mentioned, the IR-based perception is
highly nonlinear. The most large influence on accuracy of
perception exerts the resolution of the distance sensor. Inthe
center of radiation ray, the intensity of IR radiation is high-
est. Closely to the bounds of this ray, this intensity becomes
gradually degraded (Figure 1). The main component of a re-
flecting light consists of the energy of the central radiation
stream. However low-intensity ”secondary streams” spread
the reflecting light so that object’s edges and gaps between
objects get non-recognizable. With a poor resolution of dis-
tance sensor, small geometrical elements cannot be perceived
and so cannot be used as features for recognition. Therefore
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Figure 1:Perception by using the IR beam,Rmax recognition dis-
tance,Dres, Ores distance/object resolution.(a) Thickness of radi-
ation beam and influence on the size measurement;(b) Nonlinearity
in the identification of many-surfaces geometry.

for perception are suitable only such IR-emitters that havean
as small as possible opening angle of the beam.

Secondly, the accuracy of measurement depends on the dis-
tance to a reflecting surface1. In Figure 2(a) we demonstrate
this effect for the developed sensor system. Nonlinear accu-
racy essentially influences the further recognition of features.

The reflecting light is also very sensitive to the color of re-
flection object. In Figure 2(a) we show the distance measur-
ing values for white and gray objects. Further in experiments
we use only white color objects. The distance measuring also
depends on the object’s slope to a radiation ray. In Section 4
we discuss in detail these nonlinearities and suggest some ap-
proaches to absorb them.

Since we did not found a suitable integrated IR-solution
for the microrobot, we decided to develop our own required
hardware and the corresponding processing algorithms. In
the next sections we describe them.

1The dependence between reflecting light and distance is also
nonlinear however this problem can be easily solved by a look-up
table or some approximation functions.
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Figure 2:(a) Dependency between ADC values of emitter voltage on phototransistor andthe distance to reflecting object. Shown are values
for the white reflecting object (white paper) and the grey reflecting object (grey cardboard);(b) The used features of IR-diagrams relevant
for identifying the surfaces;(c) The ”thickness effect” of radiation beam by scanning a gap with different size r. The distance between a
microrobot and the gap is 70 mm.

3 Development of the IR-based perception
system

The main requirement on the IR-perception is given by as
small as possible opening angle of the radiation ray. Addi-
tionally, IR-emitter has to provide a high energy beam, being
able to get good deep images. Finally, IR-emitter and receiver
should be able to work in a communication mode.

The perception system of the microrobot is a part of IR-
system used for proximity sensing, obstacle detection, dis-
tance measurement and communication, as well (Figure 3).
For the perception and objects recognition we use only the

(a) (b)

Figure 3: (a) The megabitty board and the sensors board used in
the prototype of a microrobot;(b) The 6-directional sensor system
for directional communication and proximity sensing.

distance measuring sensor, so that only this sensor is fur-
ther considered. This sensor consists of a receiver with a
wide opening angle (used also for communication and prox-
imity sensing) and an emitter with as small as possible beam
angle (used for perception and long-range communication).
We utilize the Si phototransistor TEFT4300 (60o, peak sen-
sitivity 950 nm) and the high power GaAs/GaAlAs emitter
TSAL6100 (radiant intensity>80 mW/sr, 20o, the real open-
ing angle is of 18-22o, 950 nm). This combination is a result
of many experiments with different sensors (over 30 pairs),
with integrated receiver/emitter like SFH9201, as well as
non-integrated ones. The TEFT4300-TSAL6100 pair demon-
strated the best spectral coupling, the longest sensing distance

and the acceptable nonlinearity of sensing. Although the IR-
emitter is relatively large for the microrobot (8xφ5 mm), the
specific construction of the chassis allows to hide it insidethe
robot.

Since IR-emitter and receiver are non-integrated and are
placed side by side in the chassis, they have to be optically
isolated. The optical isolation of the emitter allows also re-
ducing the opening angle of the beam up to 10-15o (it reduces
also a perception distance). However the main problem here
is to provide similar optical characteristics of isolationfor a
large number of different microrobots in a swarm (to avoid
later the problem of individual calibration of each microro-
bot).

The principle of object recognition is the following. As
soon as a robot detects (by means of proximity sensors) an
obstacle in front of itself, it switches on the high power IR-
emitter and after 1ms delay (needed to get reliable reflecting
light) measures voltage on the emitter of phototransistor.The
dependence between emitter voltage (after ADC) and the dis-
tance to an object is shown in Figure 2(a). Generally, this
sensor perceives distances up to 300 mm. However accuracy
of measurement is different. For the pairdistance-accuracy
where∆ is the accuracy, we obtained the following values:
30-100 mm→ ∆=1 mm, 100-150 mm→ ∆=3-5 mm, 150-
200 mm→ ∆=10-15 mm and after 200 mm→ ∆=30-50
mm. Therefore, the reasonable measuring distance for object
recognition lies within 30 mm-100 mm (with the accuracy of
1-2 mm).

Not only the resolution of the IR-sensor is important for
scanning the objects. During scanning, a microrobot turns
on some degrees. The more exact is this turning, the more
precise is the spatial resolution of sensor data. Microrobot
does not possess any devices allowing to measure positions
and orientation of chassis or wheels. Therefore there is only
one way to rotate a robot, namely to turn the motors on and
after some delay turn them off. This delay has to be so cho-
sen, that a robot rotates on some fixed degree. The motors
are controlled through the H-bridge SI9988, that can change
a polarity of supplying current. Choosing normal polarity for
one motor and inverse polarity for the second motor, the ro-
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Figure 4:”Jasmine”, the prototype of the microrobot, scans different surfaces,whered is the distance to surfaces.(a) Scanning of the finite-
size surface, object 48 mm;(b) Scanning of the convex surface;(c) Scanning of the 3-concave surface;(d) The IR-diagram for finite-size
surface;(e)The IR-diagram for convex surface;(f) The IR-diagram for 3-concave sides surface of 95×95×95 mm;

bot can rotate without changing its own position. In this way
we get relatively shift-errorless deep images. After some tests
we achieved the resolution and accuracy of rotation 1o (tak-
ing into account different friction between weels/chassisand
floor surface).

In our experiments, when a robot detects an obstacle on
the distance of 70 mm± 10 mm, it stops and then rotates
60o left. After that it scans the obstacle with the distance
sensor by rotating 120o right. During this scanning it writes
the obtained values of distances each 1 degree into an integer
array. In this way we have 120 values describing a visible
geometry of the encountered obstacle. In Figure 4 and 5 we
demonstrate some geometries of encountered obstacles and
the scanned surfaces.

4 Features extraction from IR-deep images
After performing the first experiments, we faced the follow-
ing challenge: which features of the obtained IR-diagrams
are relevant for identifying the geometry of the surfaces ? By
analyzing the IR-diagrams in Figure 4 and 5, we find the fol-
lowing features as representative and useful in the IR-based
individual perception (Figure 2(b)):
1. The angleα, which represents the scanning angle between
the first visible edge and the last visible edge of the surface;
2. The peak intensity of the diagram, Imax. This corresponds
to the maximal intensity of reflecting light and, in turn, to the
minimal distanced between the surface and the microrobot.
For the most types of surfaces (beside convex corners) this

minimal distance is measured as a perpendicular to a surface.
This feature allows calculating the visible size of a surface by
using trigonometric relations;
3. The left and right slopes, denoted asγl andγr are use-
ful for identifying the size-type of the surface (unlimited, big,
medium, small). They are calculated as slopes of the approx-
imation linesSl, Sr. The slope denotes also the ”degree of
a distance decreasing” and enable us to identify the so-called
”convex surfaces” that cannot be recognized in the trigono-
metrical way;
4. The position of the ”center” of the IR-diagram, Pimax

in relation to the scanning angle (”0”, origin point on the X
axis). Displacement of the center points to a slope between
the front of robot and surface. In this way we can identify a
directional orientation of the microrobot.

Now we formalize the nonlinearities mentioned in Sec-
tion 2 and present their impact on the corresponding features:
1. Nonlinear thicknessof the IR radiation ray and so differ-
ent distribution between high-energy beam and low-energy
beam. The first effect of this nonlinearity consists in spread
edges (Figure 2(b)). This nonlinear effect can be absorbed
by calibration. The second effect is shown in Figure 2(c).
At scanning many-surfaces geometry (a gap between objects)
a robot cannot reliable differentiate between 2-concave sur-
faces and surfaces that belong to different objects;
2. Nonlinear measurement for small distances. As known
from other IR-distance measurement systems (e.g.[Caprari
and Siegwart, 2003]), the maximal intensity of measurement
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Figure 5:IR-diagrams for different types of surfaces,d is a distance to surfaces.(a) ”Infinite-size” surfaces with flat geometry;(b) Convex
round (external diameter 125 mm) surface;(c) Many-surfaces geometry (1st convex corner 122×60 mm and 2nd concave corner 60×95
mm), robot positioned 70 mm before the middle part.

lies in 10-25% before the front of IR-receiver, after that the
intensity goes down (therefore small distances cannot be mea-
sured by these systems at all). Due to the specific restric-
tion and the application of high-power GaAs/GaAlAs emit-
ter, we removed this effect. However the surfaces that lie less
then 40 mm away from a robot are represented only by val-
ues 245-250. In this way, for close measurement ( 30 mm)
we get a flat horizontal diagram. Another undesired effect
in small-average distances (40-70 mm) consists in a sponta-
neous decreasing of peak intensity (this is observable in all
IR-diagrams in Figures 4 and 5). We cannot identify the na-
ture of this nonlinearity and assume multiple IR-reflections as
a reason for them;
3. Nonlinear accuracyof distance measurement. This re-
quires nonlinear correction (it is done as a look-up table) of
trigonometric relation in dependence of distance. However
this nonlinearity is very ”tricky”. Even when a robot starts
a measurement in the ”good” area of 40-120 mm, a part of
geometry can lie over 150 or 200 mm away. The effect of
this nonlinearity appears in unreliable identification of many-
surfaces geometry (Figure 5(c) ”left to 1st. corner”);
4. Nonlinear rotationof the robot. This can lead to different
left γl and rightγr slopes even for symmetric surfaces. The
most easiest solution here is to calibrateγl andγr;
5. Nonlinearity in measuring convex surfaces. The identifi-
cation of all types of convex geometries is performed byγl

andγr. The difference between slopes for e.g. round objects
(Figure 5(b)), convex corners (Figure 4(b)) and finite-sizeflat
objects (Figure 4(a)) is small, moreover due to a nonlinear
intensity diagram, these slopes change with distances. This
problem has some basic character and we hardly belief that
with all nonlinearities of IR-perception we are able to reli-
able identify the type of convex surfaces.
The main problem of these nonlinearities represents the ne-
cessity to maintain many look-up tables for corrections. This,
in turn, is limited by a small memory of Atmel microcon-
troller. The assumption is that this problem can be solved
in collective way. We can reduce the accuracy of individ-
ual recognition (so that to satisfy all hardware constraints) till
such a degree which still allows a reliable collective recogni-

tion. Now, based on the discussed features and nonlinearities,
we can briefly analyze the types of surfaces.

1. Surfaces with flat geometry.The flat type of geometry
is primarily characterized by only one peak value on the IR-
diagram. Finite-size surfaces are also characterized by large
left and right slopes and scanning angleα ≪ 120◦, Fig-
ure 4(a). The sizeLvis can be calculated as2d tan (α/2),
taking into account the ”fuzzi edge” nonlinearity.

”Infinite-size” surfaces (Figure 5(a)) have small slopes of
IR-diagrams andα ∼ 120◦. To absorb the nonlinearity of
slopes for small and large distance, we apply the polygonal
approximation[Pitas, 1993] and use in calculation the rela-
tion γ{r,l}/S{r,l} instead of simpleγ{r,l}, whereS{r,l} is the
length of approximating line. In the performed experiments
the probability of correct identification is very high and the
accuracy of size calculation is of 5 mm (15 mm in the worst
case).

2. Surfaces with convex geometry.Surfaces with con-
vex geometry possess also only one peak value, however
larger slopes then flat geometries. This type of geometry
has to be identified before the calculation of size, which has
no sense in this case. There are several types of convex
geometry: convex corners and convex round surfaces (Fig-
ure 4(b)), convex many-surface geometry (can be recognized
only collectively)(Figure 4(f)). We identify this geometry
by γ{r,l}/S{r,l} in the IR-diagrams. The difference between
them points to a position in relation to a corner (left to a cor-
ner, right to a corner). The probability of correct identifica-
tion of convex round geometry is very high, however convex
corners are often classified as flat geometry. One approach to
avoid this problem is the so-called ”active exploration” (sim-
ple move towards the surface and scan again induces the ap-
pearance of a large ”flat region” in the peak intensity which
points to the flat type of geometry).

3. Many-surfaces and concave geometries.Concave
geometries manifest primarily as multiple peaks in IR-
diagrams. Based on the number of peaks we can differenti-
ate between 2-concave (concave corners) and 3-concave sides
geometry (Figure 4(c)). Concave many-surfaces geometries
(Figure 4(b)) can be also classified by one robot. They have
one peak value, however multiple left or right slopes. Many-
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Figure 6: (a) Distributed architecture for collective observation;(b) Spatial distribution of the robots around the observed object;(c)
Geometries for matching and objects classes.

surfaces geometry can also be composed from surfaces that
belong to different objects. Generally, concave geometries
can be identified with high reliability, however some fine dif-
ferentiation between them is not always possible.

4. Estimation of probability. Since the robot cannot reli-
able classify the type of surfaces, it calculates a probability of
correct classification. The calculation is done in the following
way. We measure the possible values ofα, d, γ{r,l}/S{r,l},
Pimax and estimateLvis for all types of surfaces. The robot
uses last square metrics to calculate the relation between the
measured values and these presaved types. For collective per-
ception a robot sends all possible classifications that havethe
probability over 30%.

Through the presented features of the IR-deep image we
tried to classify several surfaces and to identify the classifica-
tion probability as well, as base steps or components required
for the individual perception.

5 Collective Perception
The described in the previous sections individual percep-
tion provides the sensor input for the collective perception.
The approach for collective perception presented here pro-
poses that each robottalks to its neighbors to exchange
information about the surrounded object. In this task we
limit ourselves only to the problem ofcollective classifica-
tion [Pradier, 2005]. The robot possesses the objects models
and have only to order the collective sensor input to one of
the presaved model.

The distributed architecture for collective perception is
shown in Figure 6(a). There is no privileged agent with a
special role: all robots perform the same operations. The sug-
gested method is homogeneous, i.e. all robots act the same
and there is no need for a leader. Due to the homogeneous
architecture the approach is robust, scalable, moreover new
robots can join the team dynamically without any need to
readjust any task assignment. Figure 6(b) shows how robots
are deployed during collective observation. There are two
possible implementations for the propagation of hypotheses:
a single agent collects the information needed to identify an
object by moving around it and performing the sensing oper-
ations; a single agent acquires local evidences and propagates

hypotheses for the further fusion.

5.1 Object model
Given the limitations on the sensing capabilities of the robots,
object classes can only be defined in terms of their geome-
tries, as mentioned in Section 4. Figure 6(c) shows the 2D
geometries of the four object classes which will be used sub-
sequently. Once robots are situated around the object, they
can estimate the local properties of the object as seen from
their current positions calledviewpoints. The actual mea-
surement obtained from a viewpointv can be noted asS(v);
S : V 7→ feature vector and represents the output of the
distance sensors. Given an object class, it is possible to es-
tablish the expected sensor outputs for a number of views.
A number of viewpointsnKi

V for each object classKi are
chosen, along a trajectory situated in the center of the mea-
surement domain, and noted asV

Ki =
(

vKi
n

)

. The corre-
sponding expected measurements for objects of classKi are

S
(

V
Ki

)

=

(

S
(

vKi

1

)

, . . . , S

(

vKi

n
Ki
V

))

. Therefore, the ob-

ject model for a classKi incorporates an ordered sequence of
views for differentsuccessivepositions around objects of that
class. The starting position is arbitrary: only the ordering is
relevant. The direction — clockwise or counterclockwise —
can be chosen arbitrarily, but must be the same for all object
models.

Additionally, object models include information about the
reachability of different viewpoints, taking into accountboth
geometrical constraints and the limitations imposed by the
communication capabilities of the robots. It is noted as

WKi =
{ (

vKi

j , vKi

k

)
∣

∣

∣
vKi

k reachable fromvKi

j

}

. Fi-

nally, the corresponding distances between viewpoints in
WKi are added to the object model, asdV : V

Ki×V
Ki → R.

The set of all canonical measurements — corresponding to
sets of observable features, calledaspects— in the model

is notedA =
{

S
(

v
Kj

i

)}

and its cardinality can be re-

duced by clustering the expected measurements. In that
case, a sequence of canonical views could match several
(identity, position) pairs.

The goal of collective classification in a swarm of robots is
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to estimate that classKi the object being observed belongs to.
Whennr robots are situated in an area surrounding the object
(measurement domain) in positionsw1, . . . , wnr

, they are or-
dered implicitly depending on their position around the object
as the perimeter of the latter is explored in a given trigonomet-
ric direction. Given these positions, the robots will measure
(S (w1) , . . . , S (wnr

)). The proposed collaborative classifi-
cation method will try to estimate the corresponding canoni-

cal viewpoints
(

vKn

n(1), . . . , v
Kn

n(nr)

)

given the above measure-

ments; the end result, namely the classKn the object belongs
to, is implicit. This means that not only the class of the ob-
ject, but also the relative positioning of each robot can be
obtained.

Without any other a-priori information, and based only on
the features observed by a robot, the latter can already gener-
ate an hypothesis regarding its current viewpoint, and implic-
itly which object it is observing, if the matched view is only
present in that object model. If the observed features match
closely the features corresponding to a view that is unique to
an object class, the latter can be retained as a likely hypothesis
for the whole object.

5.2 Hypotheses fusion

By observing the object from a given position, a robot can
only generate local, basic hypotheses. Generally this is not
enough to determine the class the object belongs to. The in-
formation obtained from different measurements should be
fused via exchange of hypotheses between different robots.
Amongst the many fusion processes introduced in the liter-
ature[Abidi and Gonźalez, 1992; Hall, 1992; Klein, 1999],
the Dempster-Shafer (DS) formalism[Hutchinson and Kak,
1992] was retained because it does not require a-priori class
probabilities and is able to capture the notion of uncertainty.
The often-cited drawback of the DS method is that its com-
plexity grows exponentially with the cardinality of the prim-
itive hypothesis set. However, due to the way hypotheses
are generated from the object models, the complexity can be
proven to be polynomial[Hutchinson and Kak, 1992].

Dempster-Shafer (DS) evidential reasoning[Shafer, 1976]
is an extension to Bayesian inference that allows each source
of information to contribute only to the evidence it has gath-
ered, without overcommitting or trying to make hasty choices
based on incomplete information. The Dempster-Shafer ap-
proach allows to express the lack of information by separating
belief for a proposition from its mere plausibility, assigning
probability masses to sets of propositions in such a way that
the latter is free to move to any subset.

Probability mass assignment. Information sources can
distribute probability masses among subsets ofΘ, whereΘ
is the set of all statements about the possible outcomes of a
random experiment. It is represented by theframe of dis-
cernment(FOD). The FOD is a set of mutually exclusive and
exhaustive statements namedsingletons. When a probability
mass is assigned to a set of singletons, it is free to move to any
subset. Consequently, assignment of probability mass toΘ
represents ignorance, since the probability mass can move to
any element ofΘ. When a source of evidence cannot differ-
entiate between two propositions, it can assign a probability

mass to a set including both.
The probability mass assignmentfunction associates a

probability mass to the sets in the power-set2Θ of Θ; it is
therefore a functionm : 2Θ −→ R verifying the following
propertiesm (∅) = 0, 0 ≤ m(X) ≤ 1,

∑

x∈2Θ m (x) = 1.
The subsets{xi} of Θ such thatm (xi) > 0 are calledfo-
cal elements; the union of those subsets is termedcoreof the
probability assignmentm.

Dempster’s orthogonal sum. Two different sources
of information will yield different mass distributionsm1

and m2. Dempster’s rule of combination, or orthogo-
nal sum, can combine them if they are relative to the
same FODΘ, according tom = m1 ⊕ m2, m (X) =
K

∑

X1∩X2=X m1 (X1)m2 (X2). K is a normalization term

defined asK =
1

1 −
∑

X1∩X2=∅ m1 (X1)m2 (X2)
, which

normalizes the new probability masses so that their sum
is still unity. It can be seen as a measure of the degree
of conflict between the two sources of information. When
∑

X1∩X2=∅ m1 (X1)m2 (X2) = 1, the information is com-
pletely inconsistent and it is impossible to integrate it: the
orthogonal sum is then undefined.

Hypothesis refinement. General, non-basic hypotheses
are notedH level = { (ak, . . .)| ak ∈ A}. It is important to
note thatak could correspond to the output from several
canonical viewpoints. The set of all possible hypotheses is
notedH. Clearly the sequences of canonical measurements
can only correspond to valid view sequences in some object
model; impossible sequences, such as those having views that
cannot belong to the same object, will not be generated.

In general, a robot will propagate its current beliefs about
the object to the “next” neighboring robot along the perimeter
of the object — initiallym

(

H0
)

. When this information is
sent, the receiving robot can access the following:
- belief of the previous robotm1 (Hn);
- distance to the robot whose message is being receiveddpre;
- its own beliefs about the observing part of the object
m2

(

H0
)

.
The Dempster-Shafer combination rule for two hy-
pothesis sets in a compatible frame of discernment

m (Hn) =

∑

Hi∩Hj=Hn
m (Hi)m (Hj)

1 −
∑

Hi∩Hj=∅
m (Hi)m (Hj)

is slightly

modified to use the information about the relative
positions of the robots as follows. Given an hy-
pothesis set Hn, the refined hypotheses will be
Hn+1 = {U (h ⊕ a)|h ∈ Hn, a ∈ A, h ⊕ a ∈ H},
where the last condition means that the new view se-
quence must be possible for at least one object class.
The operation⊕ : H × A 7−→ H is defined as
h ⊕ x =

(

h1, . . . , hn, . . . , am1
, . . . , amp

, x
)

, where the
views am1

, . . . , amn
are a “filler”, andx is the view that is

to be added to the sequence. An additional restriction can
be imposed to the⊕ operation, namely that the filler has
to be no longer than some arbitrary number of viewpoints
k with p < k in the above expression. The output of the
functionU(h) is defined as the shortest hypothesis equivalent
to h, that is, an hypothesis that corresponds to the same
(object, offset) matches.
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Algorithm 1 Hypothesis refinement (pseudocode).
functionnew hypotheses(incomingmessage)
in hypotheses = decode(incomingmessage)
new hypotheses ={}
for hypothesis in inhypothesesdo
for feature in initialfeatureestimatesdo
if existssuccessor(hypothesis, feature)
for succ in successors(hypothesis, feature)
pm = hypothesis.pm * feature.probability *
distancefactor(incomingmessage.distance, succ.dist)

if succ not in newhypotheses
add succ to newhypotheses with p.m. pm

else
add pm to the probability mass of succ in newhypotheses

end endfor endif endfor endfor
trim hypotheses(newhypotheses)
total pm = sum of all prob. masses in newhypotheses
for hypothesis in newhypotheses
hypothesis.pm /= totalpm endfor

returnnew hypotheses
endfunction

The new probability mass assignment is calculated with
m′ (hn+1

i

)

=
∑

hn⊕x=h
n+1

i
m1 (hn)m2 (x) ξ (dpre, dmodel),

m
(

hn+1
i

)

=
m′(h

n+1

i )P
k m′(h

n+1

k )
, where an additional normaliza-

tion is required due to the usage of the distance term
ξ (dpre, dmodel). The latter reuses the known distances
between the last canonical viewpoint ofhn and the view-
point that is chosen to matchx. ξ is taken as the normal

distributionξ (dpre, dmodel) = 1√
2πγdmodel

e
− (dpre−dmodel)

2

2γ2d2
model

whose standard deviation depends on the expected distance,
to cope with the increasing inaccuracy as the latter grows;
in practice, values aroundγ ∼ 0.5 yield good results. The
overall process is described in Algorithm 1.

5.3 Hypothesis encoding and compression

Once a number of robots have acquired information about the
object they are observing, hypotheses can be refined through
exchanges. The associated communication cost is propor-
tional to the volume of data being communicated. It is pos-
sible to bound the cost of the communication associated to
collective classification as follows. It can be seen that there
can only be at mostnV =

∑

i nKi

V hypotheses being consid-
ered at any point in time, representing the number of differ-
entiable object identities and poses. The information about
the hypothesis to be transmitted can be encoded either by ex-
plicit encoding on a per-hypothesis basis, or by factoring out
information common to multiple hypotheses and using im-
plicit information (like ordering) across message fragments.

Per-hypothesis encoding. A unique identifier for each
hypothesis can be encoded using only

⌈

log2

∑

i nKi
v

⌉

bits.
Due to memory constraints, hypotheses can be encoded al-
ternatively ash = 〈i, l, o〉, whereKi is an object model,l
is the number of aspects of the hypothesis ando is the off-
set in the canonical views sequence. Thus, each hypothesis

can be encoded in at most⌈log2 |Ki|⌉ +
⌈

2 log2 maxi nKi

V

⌉

bits. The amount of information transmitted fork hy-
pothesis is directly proportional to the latter, resultingin
k

(⌈

log2

∑

i nKi
v

⌉

+ cpm

)

bits normally, wherecpm is the
amount of bits needed to encode the probability mass itself.

Implicit encoding. Only hypothesis selectorcan be sent,
indicating which hypotheses are actually transmitted and ase-
quence of probability masses. It consists ofnV bits: then-th
bit specifies if the probability mass of the hypothesis whose
identifier isn is attached to the message. In order to trans-
mit k hypotheses

∑

i nKi
v + kcpm bits are needed. Therefore

this encoding approach is only practical whenk ≫ 1, that is,
when a large number of probability masses are to be transmit-
ted, so the overhead is amortized.

Linear encoding. If a simple linear, fixed-point scheme
is employed, and the resolution is chosen to be a fraction of
the average probability massm

k
, as many as

⌈

log2

(

k
m

)⌉

bits
would be needed. For a reasonable value ofk = 10 andnV =
60, a fixed-point encoding would require⌈log2 (10 × 60)⌉ =
10 bits per probability mass.

Dynamic range compression.ITU-T G.711[ITU, 1988]
introduces twocompressionalgorithms based on the follow-
ing key idea: the signal is compressed according to a log-
arithmic expression. The simplest one,µ-law, applies the
transformy = sign (x) ln(1+µ|x|)

ln|1+µ| ,−1 < x < 1 whereµ is
chosen according to the desired output resolution; for 8 bits,
µ = 255. The similarity with probability mass encoding is
striking. Indeed, based on theµ-law expression, probability
values can be encoded usingE(m) = 2n ln(1+(2n−1)m)

n ln(2) so
that the encoded probability mass fits inn bits, and the dis-
tortion ratio is minimal. Figure 7(a) shows the minimal rep-
resentable probability mass for different encoding lengths.

Hypothesis set compression.Regardless of the method
used to encode the hypothesis set, the cost, in terms of amount
of information to be transmitted, grows with the number of
hypotheses propagated. It is thus desirable to minimize the
cardinality of the hypothesis set before transmission. This
can be performed either bytrimming (discarding hypotheses
whose probability mass is comparatively or in absolute terms
small) or by coalescing(grouping several hypotheses into
one corresponding to the union of the corresponding proposi-
tions).

Trimming. The cardinality of an hypothesis set can be re-
duced by simply ignoring unlikely hypotheses. The simplest
way is retaining only hypotheses whose probability mass is
higher than some absolute threshold. Figure 7(b) shows the
cardinality of the hypothesis set when the latter is trimmedac-
cording to different absolute thresholds. The hypothesis can
also be made smaller by removing all the hypotheses whose
probability mass is below a threshold relative to the most
likely hypothesis, i.e. those that satisfypm < r×maxi pmi,
wherer is the relative threshold andpmi are the probabil-
ity masses. The performance of this method is illustrated in
Figure 7(c).

Coalescing. It is possible to further minimize the cost of
transmitting an hypothesis set by transferring only some hy-
potheses. Those not specified explicitly can be coalesced into
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Figure 7:(a) Minimal representable probability mass using dynamic range compression; (b) Number of hypotheses with reduction based on
absolute threshold;(c) Number of hypotheses with reduction based on relative threshold.

a more general hypothesis carrying the sum of the probabil-
ity masses usingm(X) =

∑

Y ⊆X m(Y ). This scheme also
makes the overall communication more robust, since it can be
interrupted without adverse consequences at any point during
the transmission of the probability masses.

Termination. When information fusion is successful, the
whole group of robots will converge as a whole towards a
common decision regarding the nature of the object. The final
decision of each robot can be taken as the hypothesis with the
highest associated probability mass. It is therefore necessary
to know when a given hypothesis set can be considered as
”refined enough”. The key idea is that hypothesis refinement
can be considered finished when enough evidence has been
collected, i.e. the ambiguity of a set of hypotheses is larger
than a given threshold.[Hutchinson and Kak, 1992] defines
the ambiguity of an hypothesis set, closely related to the con-
cept of entropy in information theory, as follows:A (Ω) =

−K
∑

θ∈Ω p (θ) log p (θ), p (θ) =
P

θ∈H m(H)

|H| . This defini-
tion takes into account the fact that an hypothesis might cor-
respond to several individual statements or singletons. Itcan
be seen than the ambiguity measure of the probability mass
assignment{Ω =⇒ 1}, i.e. complete ignorance, corresponds
to the entropy of an equiprobable distribution over|Ω| possi-
ble outcomes.

6 Preliminary experiments and discussion
Preliminary experiments have been performed with 10 pro-
totypes of the microrobots Jasmine in the field of individual
and collective perception. In experiments we measured the
feature extraction and surface’s recognition, as described in
Section 4 and collective hypothesis refinement, as described
in Section 5. The robots are placed in the situations like those
depicted in Figures 4, 5. Table 1 contains the probability mass
assignments for the three stored patterns “flat surface”, “con-
cave area” and “M concavity”, represented in Figure 6 (c).
The calculated probabilities from experimental scans confirm
the results predicted by the simulation. The collective clas-
sification process was tested in hybrid approach, where the
real scan data are taken from the microrobots, however the
hypothesis fusion was performed in the host computer. The
reason is a lack of bidirectional communication in the proto-
types, that is currently under improvement. Figure 8(a) shows

Feature Distances Probability masses
Flat Concv. M Flat Concv. M

Conca- 1020 543 1096 0.26 0.49 0.24
vity 765 872 1359 0.41 0.36 0.23

664 764 1251 0.42 0.36 0.22
1275 861 995 0.27 0.39 0.34
702 215 1105 0.20 0.67 0.13
1020 1020 1418 0.37 0.37 0.26

Flat 258 812 1864 0.69 0.22 0.10
surface 259 954 1846 0.71 0.19 0.10

510 872 1862 0.54 0.31 0.15
M 1785 1785 1646 0.32 0.32 0.25

conca- 1530 1343 789 0.25 0.28 0.48
vity 1436 1288 1190 0.30 0.34 0.36

1444 1331 895 0.27 0.29 0.44
1530 1376 1053 0.28 0.31 0.41
1624 1570 1312 0.31 0.32 0.38
1457 1294 861 0.26 0.29 0.44
1275 1061 559 0.22 0.27 0.51

Table 1: Probability mass assignments according to Jasmine’s
scan data.

the belief of a robot after its initial estimation, which is based
only on the information obtained via distance sensors, and af-
ter reception of messages from other robots. The belief values
converge quickly towards the correct value.

Figure 8(b) illustrates the evolution of robots placed around
a “T shaped” object. The curves “correct”, “wrong class” and
“wrong pose” indicate respectively the fraction of robots that
took the correct decision, those which made a mistake in the
class of the object, and finally those which were able to deter-
mine the class of the object correctly but could not estimate
their relative positions accurately. The graphs corresponds to
an average value for several successful processes.

Figure 8(c) shows the success rate for different conver-
gence rates. It can be interpreted as follows: a pair

(

x
100 , y

100

)

in the curve means that iny percent of the runs the rate of
correct decisions remained stable atx percent or higher af-
ter thirty message exchanges. We can therefore see that in
around 66% of the processes all robots took the right deci-
sion regarding the object identity and their relative position
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Figure 8: (a) Evolution of the classifying estimations of a robot. The belief value evolves asthe robot obtains information from its peers,
while observing an object of class “T shape”;(b) Convergence in successful collective classification processes (T);(c) Success rate for
different convergence thresholds.

(the rate for a convergence equals to or greater than 80% ex-
ceeds 82%), more than one half of the robots reached correct
decisions regarding both object identity and position in over
90% of the classification operations. The group of microro-
bots converged towards a wrong decision regarding the iden-
tity of the object in around 5% of the classification processes.
Around 10% of the classification processes end up with less
than one robot out of ten with correct identity but wrong posi-
tional decisions. Around 15% of the classification processes
failed to converge to either a correct decision within a 20%
rate or to an erroneous decision.

Summary. In this paper we addressed the specific prob-
lem of perception in a swarm of microrobots. We investigated
the process of individual perception by designing and imple-
menting the IR sensory system. We researched also the prob-
lems related to IR-based perception and developed/tested the
hardware and the corresponding algorithms allowing sensing
and classifying the geometry of the surfaces. The collective
classification was performed by fusing local hypotheses by
using a formalism based on the Dempster-Shafer evidential
reasoning. Communication needs were analyzed. Experi-
ments demonstrated that, the size of robot is scaled down
(over 20 times in comparison with the middle-size league
in RoboCup), however the microrobot still possesses cogni-
tive features. However we also observe that the smaller the
size (the more reduced capabilities) of a separate robot is,the
more functionalities can be achieved only in collective way.
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